Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization

نویسندگان

  • Ernesto G. Birgin
  • José Mario Martínez
چکیده

Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theory of Secant Preconditioners

In this paper we analyze the use of structured quasi-Newton formulae as preconditioners of iterative linear methods when the inexact-Newton approach is employed for solving nonlinear systems of equations. We prove that superlinear convergence and bounded work per iteration is obtained if the preconditioners satisfy a Dennis-Moré condition. We develop a theory of LeastChange Secant Update precon...

متن کامل

Action constrained quasi-Newton methods

At the heart of Newton based optimization methods is a sequence of symmetric linear systems. Each consecutive system in this sequence is similar to the next, so solving them separately is a waste of computational effort. Here we describe automatic preconditioning techniques for iterative methods for solving such sequences of systems by maintaining an estimate of the inverse system matrix. We up...

متن کامل

Local Convergence Theory of Inexact Newton Methods Based on Structured Least Change Updates

In this paper we introduce a local convergence theory for Least Change Secant Update methods. This theory includes most known methods of this class, as well as some new interesting quasi-Newton methods. Further, we prove that this class of LCSU updates may be used to generate iterative linear methods to solve the Newton linear equation in the Inexact-Newton context. Convergence at a ¡j-superlin...

متن کامل

Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems

An inexact Newton algorithm for large sparse equality constrained non-linear programming problems is proposed. This algorithm is based on an indefinitely preconditioned smoothed conjugate gradient method applied to the linear KKT system and uses a simple augmented Lagrangian merit function for Armijo type stepsize selection. Most attention is devoted to the termination of the CG method, guarant...

متن کامل

Analysis of Augmented Lagrangian-Based Preconditioners for the Steady Incompressible Navier-Stokes Equations

We analyze a class of modified augmented Lagrangian-based preconditioners for both stable and stabilized finite element discretizations of the steady incompressible Navier–Stokes equations. We study the eigenvalues of the preconditioned matrices obtained from Picard linearization, and we devise a simple and effective method for the choice of the augmentation parameter γ based on Fourier analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2008